Two New Triterpene Acids from Phellinus pomaceus

A. G. González
Instituto Universitario de Química Orgánica, Universidad de La Laguna, Tenerife, Spain
J. Bermejo Barrera *
Instituto de Productos Naturales Orgánicos, CSIC, La Laguna, Tenerife, Spain
M. J. Mediavilla Pérez and F. J. Toledo Marante
Escuela Universitaria Politécnica, Las Palmas de Gran Canaria, Spain
\section*{A. Perales}
Instituto Rocasolano, CSIC, Departamento de Rayos-X, Serrano 119, 28006 Madrid, Spain

The structures of two new triterpene acids isolated from Phellinus pomaceus have been determined by a combination of chemical and physical methods and confirmed by X-ray crystallographic analysis of one of their methylated derivatives. The compounds were identified as $4 \beta, 14 \alpha$-dimethyl-3-nor-5 α-pregn-8-ene- $4 \alpha, 20 \alpha$-dicarboxylic acid and $4 \beta, 14 \alpha$-dimethyl-20-oxo-3-nor- 5α-pregn- 8 -ene- 4α-carboxylic acid.

In a previous paper on the constituents of fungi ${ }^{1}$ we reported the isolation of two steroids: ergosta-7,22-dien-3-one and ergosta-7,22-dien-3-ol; four pentacyclic triterpenes: friedelin, taraxerol, β-boswellic acid, and ursolic acid; and palmitic and oleic acids.

In a continuation of our work we now report the structure elucidation of two new triterpene acids, javeroic acid (1) and phellinic acid (5), both of which have a degraded lanosterol skeleton, from Phellinus pomaceus.

(1) $R^{1}=R^{2}=\mathrm{CO}_{2} \mathrm{H}$
(2) $R^{\prime}=R^{2}=\mathrm{CO}_{2} \mathrm{Me}$

(4)

(3)

(5)

Scheme 1.

Allylic oxidation of the diester (2) with chromium trioxideacetic acid gave a yellow diketone (3). This confirms the presence of a double bond at $\mathrm{C}(8)$. Its i.r. spectrum shows absorption bands at 1725 and $1668 \mathrm{~cm}^{-1}$ assignable to methyl esters and to the system $\mathrm{O}=\mathrm{C}-\mathrm{C}=\mathrm{C}-\mathrm{C}=\mathrm{O}$, respectively. The

Table 1. Conformational and configurational characteristics for compound (2) $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4}$

Torsion angles for ring systems							Cremer's parameters ${ }^{\text {a }}$			
Ring	τ_{1}	τ_{2}	τ_{3}	τ_{4}	τ_{5}	τ_{6}	Ring	$\Theta\left({ }^{\circ}\right)$	$\Phi\left(^{\circ}\right)$	$Q(\AA)$
B	3	-2	30	-61	62	-32	B	128.4	61.6	0.52
C	-27	54	-60	37	-7	2	C	50.4	128.5	0.51
A	-43	25	2	-29	43	-	A	-	-3.0	0.45
D	17	13	-38	49	-40	-	D	-	128.6	0.48

Conformational characteristics of the ring substituents with respect to the previous/next ring atom

$$
\begin{array}{ll}
\mathrm{C}(13)-\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(22)=174.0(\mathrm{ap}) & \mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(24)-\mathrm{O}(4)=-162.3(-\mathrm{ac}) \\
\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(20)-\mathrm{C}(22)=55.8(\mathrm{sc}) & \mathrm{C}(2)-\mathrm{C}(4)-\mathrm{C}(24)-\mathrm{O}(4)=-50.2(-\mathrm{sc})
\end{array}
$$

Configurational characteristics for ring substituents

$$
\begin{aligned}
{[C(14)-C(13)-C(17)-C(20)} & =[C(14)-C(13)-C(17)-C(20)]-[C(14)-C(13)-C(17)-C(16)]=-162.3-(-39.90)=-122.4(\beta) \\
{[C(10)-C(5)-C(4)-C(24)] } & =[C(10)-C(5)-C(4)-C(24)]-[C(10)-C(5)-C(4)-C(2)]=142.1-25.2=16.9(\alpha)
\end{aligned}
$$

${ }^{a}$ D. Cremer and J. A. Pople, J. Am. Chem. Soc., 1975, 97, 1354.
absorption at $1668 \mathrm{~cm}^{-1}$ is in agreement with that reported for 7,11-dioxo-8-ene diketonic arrangements in other steroidal compounds. ${ }^{2}$ Its mass spectrum showed the molecular ion at m / z $444\left(M^{+}\right)$, accompanied by the fragments $m / z 429(M-\mathrm{Me})^{+}$, $385\left(M-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}$, and $370\left(M-\mathrm{Me}-\mathrm{CO}_{2} \mathrm{Me}\right)^{+}$. A more detailed study of the diketone gave fragmentations that are in perfect agreement with the cleavages presented by 7-keto and 11-keto steroids. ${ }^{3}$

Reduction of this diketone with zinc-acetic acid gave a crystalline product whose mass spectrum indicated absence of the quaternary double bond, the molecular ion appearing at m / z $446\left(M^{+}\right)$.

On the basis of the above mentioned data we assigned the structure dimethyl $4 \beta, 14 \alpha$-dimethyl-3-nor-5 α-pregn-8-ene$4 \alpha, 20 \alpha$-dicarboxylate (dimethyl javeroate) to compound (2).

The detailed structure of compound (2) was established by X ray crystallography. The conformational characteristics for the molecule of the compound $\mathrm{C}_{27} \mathrm{H}_{40} \mathrm{O}_{4}$ (Figure) are given in

Figure. X-Ray molecular structure of dimethyl javeroate (2)

Table 1. Table 2 gives the final atomic co-ordinates for non-H atoms. The torsional angles (${ }^{\circ}$) are given in a clockwise direction, starting at $C(9)\left(\tau_{1}=3\right), C(11)\left(\tau_{1}=-27\right), C(10)$ ($\tau_{1}=-43$), and $C(17)\left(\tau_{1}=17\right)$, for rings B, C, A, and D, respectively. Rings B and C have an envelope conformation due to the influence of the unsaturation at the $\mathrm{C}(8)-\mathrm{C}(9)$ bond, and this is indicated by the torsion angles (Table 1). The conformation of ring A is an envelope with the flap at $C(10)$. Ring D has a conformation between a half-chair and an envelope. The asymmetric parameters ${ }^{4}$ for the ring system show that the dominant symmetry for rings \mathbf{B}, \mathbf{c}, and A is mirror symmetry; in ring D the asymmetric parameters show that both symmetries, rotational and mirror, are present: ($D_{\mathrm{s}}^{13} 0.099, D_{2}^{16}$

Table 2. Final atomic co-ordinates $\left(\times 10^{4}\right)$ for non-H atoms of compound (2) with e.s.d.s in parentheses

Atom	x	y	z
O 1	$4394(7)$	$1266(2)$	$1975(8)$
$\mathrm{O}(2)$	$4660(7)$	$908(2)$	$5250(7)$
$\mathrm{O}(3)$	$41(8)$	$-2598(2)$	$-226(14)$
$\mathrm{O}(4)$	$1912(7)$	$-3184(2)$	$-60(10)$
$\mathrm{C}(1)$	$6075(6)$	$-2139(2)$	$1542(9)$
$\mathrm{C}(2)$	$5233(7)$	$-2598(2)$	$307(10)$
$\mathrm{C}(4)$	$3002(7)$	$-2503(2)$	$-1342(9)$
$\mathrm{C}(5)$	$2756(6)$	$-1984(2)$	$-1013(8)$
$\mathrm{C}(6)$	$1257(6)$	$-1713(2)$	$-2951(8)$
$\mathrm{C}(7)$	$1166(6)$	$-1233(2)$	$-2030(8)$
$\mathrm{C}(8)$	$3072(6)$	$-1062(2)$	$-196(7)$
$\mathrm{C}(9)$	$4759(6)$	$-1309(2)$	$678(7)$
$\mathrm{C}(10)$	$4877(6)$	$-1781(2)$	$-255(7)$
$\mathrm{C}(11)$	$6673(6)$	$-1124(2)$	$2504(8)$
$\mathrm{C}(12)$	$6597(6)$	$-642(2)$	$3407(8)$
$\mathrm{C}(13)$	$5024(6)$	$-346(2)$	$1596(7)$
$\mathrm{C}(14)$	$2959(6)$	$-601(2)$	$856(7)$
$\mathrm{C}(15)$	$1525(6)$	$-238(2)$	$-679(8)$
$\mathrm{C}(16)$	$2330(7)$	$215(2)$	$566(9)$
$\mathrm{C}(17)$	$4470(6)$	$116(2)$	$2416(7)$
$\mathrm{C}(18)$	$5694(7)$	$-278(2)$	$-533(8)$
$\mathrm{C}(19)$	$5805(2)$	$-1737(2)$	$-2195(9)$
$\mathrm{C}(20)$	$5897(7)$	$524(2)$	$2623(8)$
$\mathrm{C}(21)$	$7997(8)$	$457(2)$	$4468(11)$
$\mathrm{C}(22)$	$4918(8)$	$943(2)$	$3197(10)$
$\mathrm{C}(23)$	$2668(9)$	$-2654(2)$	$-3859(11)$
$\mathrm{C}(24)$	$1497(8)$	$-2765(2)$	$-458(12)$
$\mathrm{C}(25)$	$2248(7)$	$-693(2)$	$2966(8)$
$\mathrm{C}(26)$	$535(11)$	$-3452(3)$	$647(14)$
$\mathrm{C}(27)$	$3687(11)$	$1292(3)$	$5942(11)$

0.111°). The junctions of rings A / B and C / D are trans. The configurations of the substituents at $(C(17)$ and $C(4)$ (methoxycarbonyl) (Table 1) are β and α, respectively, with an S configuration at $\mathrm{C}(20)$.

Phellinic acid (5), $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}$, showed i.r. absorptions at $\mathrm{v}_{\text {max. }}$ $3500-2400 \mathrm{~cm}^{-1}$ and $1700-1680 \mathrm{~cm}^{-1}$ for an acid group and a ketone. The ${ }^{1} \mathrm{H}$ n.m.r. spectrum is similar to that of the previous products, showing the presence of a methyl ketone, δ $2.15(3 \mathrm{H}, \mathrm{s})$ as well as a methyl geminal to a carboxylic group [δ $1.25(3 \mathrm{H}, \mathrm{s})]$ and two singlets, $\delta 1.00$ and 0.66 , for three methyls.

The fragmentations observed in its mass spectrum allowed us to assign the methyl ketone to be situated at $\mathrm{C}(20)$ and the carboxy group on ring A (Scheme 2).

Consequently, the structure of phellinic acid (5) is proposed

Scheme 2.
to be $4 \beta, 14 \alpha$-dimethyl-20-oxo-3-nor- 5α-pregn- 8 -ene- 4α-carboxylic acid.

Experimental

M.p.s were determined on a Kofler hot-stage apparatus, i.r. spectra on a Perkin-Elmer 257 spectrophotometer for CHCl_{3} solutions, u.v. spectra on a Perkin-Elmer 402 spectrophotometer, n.m.r. spectra on a Perkin-Elmer R-12B (60 MHz) spectrometer for solutions in CDCl_{3} with tetramethylsilane as internal standard, mass spectra on a VG Micromass ZAB-1F spectrometer, and optical rotations on a Perkin-Elmer 141 polarimeter. Unless otherwise stated all t.l.c. and column chromatography was done on Merck silica gel. Extracts were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$.

Extraction and Isolation.--Phellinus pomaceus is a perennial fungus of woody consistency, belonging to the family. Polyporaceae, class Basidiomycete, and is found parasitizing the trunks of laurisilva trees.
The fungus (15 kg), collected at El Bailadero (Tenerife, Canary Islands), was pulverized and extracted with ethanol for about 1 month. The extract was concentrated from waterchloroform, and the organic layer was dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and percolated through alumina (activity III). Evaporation of the filtrate gave a residue (150 g), chromatography of which on silica gel (5 kg) gave, on elution with n -hexane and a mixture of n -hexane-ethyl acetate, friedelin (200 mg), taraxerol (86 mg), ergosta-7,22-dien-3-one (120 mg), a mixture of palmitic and oleic acids (70 mg), β-boswellic (32 mg), ursolic (120 mg) acids, and javeroic and phellinic acids.

Methylation of javeroic acid (1), 4 $1,14 \alpha$-dimethyl-3-nor- $5 \alpha-$ pregn-8-ene- $4 \alpha, 20 \alpha$-dicarboxylic acid. A solution of the dicarboxylic acid (200 mg) in ether (20 ml) was treated with diazomethane, prepared from methyl(nitroso)urea, at room temperature for 24 h . The mixture was evaporated to dryness under reduced pressure. Alumina chromatography of the residue and recrystallization from methanol afforded needles of the diester (2) $(180 \mathrm{mg})$, m.p. $125-126^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}+101^{\circ}(c 3.6$ in $\left.\mathrm{CHCl}_{3}\right) ; v_{\text {max }}\left(\mathrm{CHCl}_{3}\right) 1725 \mathrm{~cm}^{-1}\left(\mathrm{CO}_{2} \mathrm{Me}\right) ; \delta_{\mathrm{H}}(60 \mathrm{MHz}$; $\left.\mathrm{CDCl}_{3}\right) 3.70(6 \mathrm{H}, \mathrm{s}), 2.80(1 \mathrm{H}, \mathrm{m}), 2.50(1 \mathrm{H}, \mathrm{m}), 1.25(6 \mathrm{H}, \mathrm{s})$, $1.00(3 \mathrm{H}, \mathrm{s}), 0.97(3 \mathrm{H}, \mathrm{s})$, and $0.78(3 \mathrm{H}, \mathrm{s})$ (Found: M^{+}, 416.2977. $\mathrm{C}_{26} \mathrm{H}_{4} \mathrm{O}_{4}$ requires $M, 416.2925$). Other significant peaks in the low-resolution m.s. were at $m / z 401(M-\mathrm{Me}$,
67.5%), $357\left(M-\mathrm{CO}_{2} \mathrm{Me}, 12.1\right), 341\left(M-\mathrm{HCO}_{2} \mathrm{Me}, 100\right)$, $313(M-\mathrm{Me}-\mathrm{MeCH}=\mathrm{C}(\mathrm{OH}) \mathrm{OMe}, 23.3)$, and $2.81(M-$ $2 \mathrm{HCO}_{2} \mathrm{Me}-\mathrm{Me}, 10.3$).

Oxidation of Diester (2).-To a solution of compound (2) $(120 \mathrm{mg})$ in benzene (10 ml) was added a saturated solution of chromium(vi) oxide in acetic acid-water ($90: 10$), and the mixture was stirred at room temperature for 24 h . It was neutralized with saturated aqueous NaHCO_{3} and extracted with benzene to give a yellow oil (100 mg) which, after chromatography on alumina, behaved like a single product by t.l.c. [benzene-EtOAc (9:1)]; $v_{\text {max. }} \mathrm{CHCl}_{3} 1725$ (ester) and $1668 \mathrm{~cm}^{-1}$ (diketone); $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.68(6 \mathrm{H}, \mathrm{s}), 2.50$ ($1 \mathrm{H}, \mathrm{m}$), and $1.25,1.21$ and $1.18(15 \mathrm{H}, \mathrm{s})$ (Found: $\mathrm{M}^{+}, 444.2476$. $\mathrm{C}_{26} \mathrm{H}_{36} \mathrm{O}_{6}$ requires $M, 444.2510$). Other significant peaks in the low-resolution m.s. were at $m / z 429(M-\mathrm{Me}, 3.0 \%), 385(M-$ $\mathrm{CO}_{2} \mathrm{Me}, 2.9$), and $370\left(M-\mathrm{Me}-\mathrm{CO}_{2} \mathrm{Me}, 2.5\right)$. This product was identified as dimethyl $4 \beta, 14 \alpha$-dimethyl-7,11-dioxo-3-nor5α-pregn-8-ene-4 $\alpha, 20 \alpha$-dicarboxylate (3).

Hydrogenation of Compound (3).-Compound (3) (110 mg) was treated with acetic acid (10 ml) and powdered $\mathrm{Zn}(700 \mathrm{mg})$ for 1 h . The acetic acid was removed under reduced pressure and the residue was chromotographed through silica gel [hexaneEtOAc ($8: 2$) as eluant], a single product being obtained which was identified as dimethyl $4 \beta, 14 \alpha$-dimethyl-7,11-dioxo-3-nor- $5 \alpha-$ pregnane- $4 \alpha, 20 \alpha$-dicarboxylate (4), $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 3.68(6$ H, s), and 1.25 and $1.20\left(15 \mathrm{H}\right.$, s) (Found: $M^{+}, 446.2594$. $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{O}_{6}$ requires $M, 446.2665$). Other significant peaks in the low-resolution m.s. were at $m / z 431(M-\mathrm{Me}, 9.0 \%), 415$ ($M-\mathrm{OMe}$ 19.2), 386 ($M-\mathrm{HCO}_{2} \mathrm{Me}, 25.3$), and 358 ($M-\mathrm{MeCH}=\mathrm{C}(\mathrm{OH}) \mathrm{OMe}, 21$).

Phellinic Acid (5), 4 $4,14 \alpha$-Dimethyl-20-oxo-3-nor-5 α-pregn-8-ene-4 α-carboxylic acid.-This compound (30 mg) had m.p. $218-220^{\circ} \mathrm{C}$ (from MeOH) (Found: $\mathrm{C}, 76.8 ; \mathrm{H}, 9.85 . \mathrm{C}_{23} \mathrm{H}_{34} \mathrm{O}_{3}$ requires $\mathrm{C}, 77.05 ; \mathrm{H}, 9.56 \%$); $\lambda_{\text {max. }}$. EtOH) 236, 243, and 296 nm $(\log \varepsilon 3.25,3.26$, and 3.01$) ; v_{\text {max. }}\left(\mathrm{CHCl}_{3}\right) 3500-2400$ and $1680-1700 \mathrm{~cm}^{-1}$ (acid and ketone); $\delta_{\mathrm{H}}\left(60 \mathrm{MHz} ; \mathrm{CDCl}_{3}\right) 2.90$ $(1 \mathrm{H}, \mathrm{t}, J 9 \mathrm{~Hz}), 2.15(3 \mathrm{H}, \mathrm{s}), 1.25(3 \mathrm{H}, \mathrm{s}), 1.00(6 \mathrm{H}, \mathrm{s})$, and 0.66 $(3 \mathrm{H}, \mathrm{s})$. Peaks in the high-resolution m.s. were at $m / z 358.2501$ $\left(\mathrm{M}^{+}, 19.1 \%\right.$), 343.2299 (M - Me, 16), 298.2256 (M - $\mathrm{Me}-$ $\mathrm{CO}_{2} \mathrm{H}, 22.4$), and 297.2218 ($\mathrm{M}-\mathrm{Me}-\mathrm{HCO}_{2} \mathrm{H}, 95.9$).

X-Ray Crystallographic Analysis of the Dimethyl Ester of Javeroic Acid.-A crystal of approximate dimensions of $0.4 \times 0.3 \times 0.2 \mathrm{~mm}$ was selected to measure the 4052 reflexions on a four-circle diffractometer with graphitemonochromated $\mathrm{Cu}-K_{\alpha}$ radiation $(\lambda=1.5418 \AA)$ to $\theta=65^{\circ}$ by the $\theta / 2 \theta$ mode. No intensity decay was observed during the experiment. The crystal was monoclinic, $a=7.0935(2), b=$ 29.403(1), $c=6.1170(2) \AA, \beta=110.45(1)^{\circ}$, space group $P 2_{1}$, $Z=2, V=1$ 195.37(1) $\AA^{3}, D_{\mathrm{c}}=1.1574 \mathrm{~g} \mathrm{~cm}^{-3}$; no absorption correction was applied ($\mu=5.665 \mathrm{~cm}^{-1}$). The crystal structure was solved by MULTAN ${ }^{5}$ with $250 \mathrm{Es}>1.50$. After refinement with the $2741[I>2 \sigma(I)]$ observed intensities and a value of $R=8.4 \%$, a difference map showed the major portion of the H -atoms. The rest were located in successive Fourier difference maps. A weighting scheme ${ }^{6}$ designed to have no dependence on $\left\langle w \Delta^{2} F\right\rangle v s .\left\langle F_{0}\right\rangle$ and $v s .\langle\sin \theta / \lambda\rangle$ was selected. A weighted fullmatrix least-squares anisotropic refinement, ${ }^{7}$ using the 2741 observed reflections, converged to the $R=4.4 \%$ and $R_{w}=$ 5.1%, respectively. During this refinement the parameters for the H -atoms were not refined, but were included in the structurefactor calculations. To each H-atom was assigned an isotropic
thermal parameter of the atom to which the H -atom was bonded.*

The absolute configuration was confirmed by comparison of the 50 more relevant Bijvoet differences:

$$
R_{1}=\Sigma\left|\left\{F_{\mathrm{o}}(+h)-\boldsymbol{F}_{\mathrm{o}}(-h)\right\}-\left\{\boldsymbol{F}_{\mathrm{c}}(+h)-F_{\mathrm{c}}(-h)\right\}\right| / N=
$$

$$
0.086 \text { (} 0.194 \text { for the reversed enantiomorph). }
$$

Average Bijvoet ratio:
$R_{2}=\Sigma\left|R_{\mathrm{o}}-R_{\mathrm{c}}\right| / N=1.006$ (1.012 for the reversed enantio-
morph), and:
$R_{3}=\Sigma\left|\Delta I_{\mathrm{o}}=I_{\mathrm{c}} / / \Sigma\right| \Delta I_{\mathrm{o}} \mid=0.656$ (1.560 for the reversed enantiomorph), with $N=50, R_{\mathrm{o}}=\Delta I_{\mathrm{o}} /\left\langle F_{\mathrm{o}}^{2}\right\rangle$,
$R_{\mathrm{c}}=\Delta I_{\mathrm{c}} /\left\langle F_{\mathrm{o}}^{2}\right\rangle, \Delta I_{\mathrm{o}}=F_{\mathrm{o}}^{2}(+h)-F_{\mathrm{o}}^{2}(-h)$, and
$\Delta I_{\mathrm{c}}=F_{\mathrm{c}}^{2}(-h)$

Acknowledgements

We thank Professor García-Blanco for his support and the Centro de Proceso de Datos, Ministerio de Educación y Ciencia

* Tables of thermal parameters and atomic co-ordinates for non-H atoms, atomic co-ordinates and isotropic parameters for H -atoms, bond distances and angles, torsion angles, and some interatomic distances between non-bonded atoms are deposited as supplementary material SUP 56431 (13 pp.). For details of the Supplementary Publications Scheme see Instructions for Authors (1986), J. Chem. Soc., Perkin Trans. 1,1986 , issue 1. Structure factors are available from the editorial office on request.
(Madrid) for the use of a Univac computer. One of us (J. B. B.) thanks the Comisión Asesora de Investigación Científica y Técnica (Madrid) for financial support. Thanks are also due to the AIETI (Madrid) for further financial support.

References

1 A. G. González, J. Bermejo Barrera, M. J. Mediavilla Pérez, and F. J. Toledo Marante, An. Quím., Ser. C, 1984, 80, 314.
2 W. Voser, M. Montavon, Hs. H. Günthard, O. Jeger, and L. Ruzicka, Helv. Chim. Acta, 1950, 35, 1893.
3 Ze'ev Zaretskii, 'Mass Spectrometry of Steroids,' Wiley, New York, 1975, pp. 13-15.
4 W. L. Duax, C. M. Weeks, and D. C. Rohrer, Top. Stereochem., 1976, 9, 271.
5 P. Main, L. Lesinger, M. M. Woolfson, G. Germain, and J. P. Declerq, MULTAN (1977). A system of computer programs for the automatic solutions of crystal structure from X-ray diffraction data, University of York, England and Louvain, Belgium.
6 M. Martínez-Ripoll and F. H. Cano, 'PESOS' program, Instituto Rocasolano, CSIC, Serrano 119, 28006 Madrid, Spain, 1975.
7 J. M. Stewart, F. A. Kundell, and J. C. Baldwin, The X-ray 70 System, Computer Science Center, University of Maryland, College Park, Maryland, 1970.

